Automated clustering algorithms for classification of astronomical objects
نویسندگان
چکیده
منابع مشابه
Automated Clustering Algorithms for Classification of Astronomical Objects
Data mining is an important and challenging problem for the efficient analysis of large astronomical databases and will become even more important with the development of the Global Virtual Observatory. In this study, learning vector quantization (LVQ), single-layer perceptron (SLP) and support vector machines (SVM) were put forward for multi-wavelength data classification. A feature selection ...
متن کاملAutomated Classification of Astronomical Objects in Multispectral Wide-Field Images
In this paper we present an automated method for classifying astronomical objects in multispectral wide-field images. The method is divided into three main tasks. The first one consists of locating and matching the objects in the multispectral images. In the second task we create a new representation for each astronomical object using its multispectral images, and also we find a set of features...
متن کاملModeling lightcurves for improved classification of astronomical objects
Many synoptic surveys are observing large parts of the sky multiple times. The resulting time series of light measurements, called lightcurves, provide a wonderful window to the dynamic nature of the Universe. However, there are many significant challenges in analyzing these lightcurves. We describe a modeling-based approach using Gaussian process regression for generating critical measures for...
متن کاملAlgorithms for classification of combinatorial objects
A recurrently occurring problem in combinatorics is the need to completely characterize a finite set of finite objects implicitly defined by a set of constraints. For example, one could ask for a list of all possible ways to schedule a football tournament for twelve teams: every team is to play against every other team during an eleven-round tournament, such that every team plays exactly one ga...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2004
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361:20040141